Astroparticle Physics, NAASPH-12

Ad van den Berg & Olaf Scholten Kernfysisch Versneller Instituut NL-9747 AA Groningen

(a) = Brbp ac

Exam, April 11, 2013. 09:00-12:00, Aletta Jacobshal01 5 problems (total of 100 points).

a= 1 1+2 a = 1 -1

Write the solution of every problem on a separate piece of paper with name and student number.

Write clearly, it should be readable.

Problem 1 (25 pnts in total)

In Cosmology one distinguishes four different terms in the total energy density; namely the matter, the radiation, the vacuum, and the curvature terms.

10 pnts

a. Give for each of the 4 types of energy density their scaling with red-shift z and their distinguishing features.

8 pnts

b. What is the experimental evidence that a large fraction of the total energy content of the Universe has to be attributed to dark energy?

2 pnts

c. How large is the fraction of dark energy?

5 pnts

d. Give simple physical arguments for the fact that vacuum energy has a negative pressure.

Problem 2 (20 pnts in total)

2 pnts

a. The flux of cosmic rays changes over many orders of magnitude when the energy of a cosmic ray changes. Give an approximate relation between flux and energy (or sketch the flux spectrum).

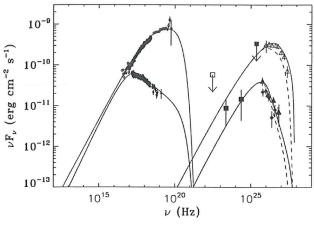
6 pnts

b. Describe the generic processes which are used to model the acceleration mechanism of cosmic rays; explain their difference.

4 pnts

c. Where could these processes occur in the Universe?

4 pnts


d. What is the GZK process? Describe which particles interact in this process and which reaction productions can emerge from this process.

4 pnts

e. What is the effect of the GZK process on the flux spectrum?

Problem 3 (20 pnts in total)

The figure displays the Spectral Energy Density (this is the product of the flux $F(\nu)$ and the frequency ν) as a function of the frequency for the extra-Galactic object Mrk501. Mrk501 has been classified as a blazar: this a very compact object (most likely a super-massive black hole, centered in an elliptical-shaped galaxy). Such objects are being regarded as possible sources of high-energy cosmic rays.

4 pnts

a. The spectrum shows a bump around a frequency of 10^{19} Hz and another bump at about 10^{27} Hz. Which type of instruments could have been used for these two measurements; indicate their possible locations.

4 pnts

b. Give a possible physics explanation for the bump around 10¹⁹ Hz and which physics parameters play an important role?

4 pnts

c. Give two different physics explanations for the bump around 10^{27} Hz.

4 pnts

d. Indicate for both of these two explanations the consequence for particle acceleration near this blazar.

4 pnts

e. Describe a method which can be used to discriminate between these two explanations.

Problem 4 (15 pnts in total)

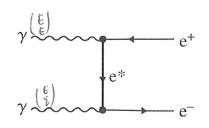
8 pnts

a. Present the proof that the expression for the kinetic energy E_R of a nucleus of mass M_R recoiling in an elastic collision with a dark matter particle of mass M_D and incident kinetic energy E_D in terms of the angle, θ , of emission relative to the incident direction is given as:

$$E_R = \frac{\mu^2 v^2}{M_R} (1 - \cos \theta)$$

where μ is the reduced mass for this collision: $\mu = M_D M_R / (M_D + M_R)$

4 pnts


b. Find the limiting values of recoil energy in terms of M_D , M_R , and v.

3 pnts

c. Calculate the maximum recoil energy of a nucleus of 80 proton masses, in collision with a dark matter particle of mass 1000 times the proton mass, traveling with a typical galactic velocity of 200 km $\rm s^{-1}$.

Problem 5 (20 pnts in total)

The process of photo-induced lepton-pair production on a nucleus is described by the Feynman diagram to the right where we want to use it to calculate the ratio of the cross section for the production of $e^+ - e^-$ pairs versus that of $\mu^+ - \mu^-$ pairs. One of the photons is the high-energy (real) photon with energy $E_r = E$ and $\vec{q_r} = E$.

The other (virtual) photon is from the Coulomb field of the nucleus, $E_v = \epsilon$, $\vec{q_v} = q$. All momenta in this problem are taken in the \hat{z} -direction and we use units where c = 1. Since the mass of the nucleus is much larger than that of the leptons you may assume $\epsilon = 0$.

7 pnts

a. Give the expression for q (in the limit that $E \gg m_{\mu}$) in terms of E and masses for the case of muon pair production (both muons with momentum k in the \hat{z} -direction). Use energy and momentum conservation in the vertices.

7 pnts

b. Express the energy, E_v , and momentum, P_v of the virtual lepton in the diagram in terms of E and masses and show that $p_v^2 = E_v^2 - P_v^2$ is of the same order of magnitude as the mass of the produced leptons.

6 pnts

c. Use the just obtained result to argue that muon-pair production is strongly suppressed as compared to electron-positron production.

Some numbers

Electron mass $m_e c^2 = 511 \text{ keV}$; Muon mass $m_\mu c^2 = 106 \text{ MeV}$; Pion mass $m_\pi c^2 = 140 \text{ MeV}$;

Proton mass: $m_p c^2 = 0.938 \,\text{GeV}$ Conversion: $1 \,\text{eV/c}^2 = 1.78 \times 10^{-36} \,\text{kg}$

Boltzmann's constant: $k = 8.62 \times 10^{-11} \,\mathrm{MeV/K}$

Planck's constant: $h = 4.1 \times 10^{-15} \, \mathrm{eV}$ s Avogadro's number: $N_A = 6 \times 10^{23} \, / \mathrm{mol}$

Solar Mass: $M_{\odot} = 1.99 \times 10^{30} \,\mathrm{kg}$

Parsec: $1 \, \text{pc} = 3.1 \times 10^{16} \, \text{m}$

Velocity of Sun w.r.t. center Milkyway: $V_{\odot} = 270 \, \mathrm{km/s}$ Velocity of Earth in orbit around the Sun: $V_{\oplus} = 30 \, \mathrm{km/s}$ Typical galactic dark matter density: $\rho_{DM} = 9 \, \mathrm{k \, M_{\odot}/pc^3}$

Air-shower physics

At $\overline{10 \,\mathrm{km}}$ height the density of the atmosphere is $0.4 \times 10^{-3} \,\mathrm{g \, cm^{-3}}$.

The penetration depth for pions in air is $\lambda_{\pi} = 120 \,\mathrm{g \, cm^{-2}}$, for protons $\lambda_{p} = 90 \,\mathrm{g \, cm^{-2}}$, and for iron is $\lambda_{Fe} = 5 \,\mathrm{g \, cm^{-2}}$.

The mean travel distance in vacuum of a pion with energy E is $d_{\pi^0} = \gamma 25 \times 10^{-9}$ m and $d_{\pi^{\pm}} = \gamma 7.8$ m where the relativistic γ -factor is given by $\gamma = E/mc^2$ and $m_{\pi}c^2 = 140$ MeV.

Integrals

For c > 0 we have: